Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Partition Strategies for the Maker-Breaker Domination Game

Bagan, Guillaume; Duchêne, Eric; Gledel, Valentin; Lehtilä, Tuomo; Parreau, Aline

Partition Strategies for the Maker-Breaker Domination Game

Bagan, Guillaume
Duchêne, Eric
Gledel, Valentin
Lehtilä, Tuomo
Parreau, Aline

Tätä artikkelia/julkaisua ei ole tallennettu UTUPubiin. Julkaisun tiedoissa voi kuitenkin olla linkki toisaalle tallennettuun artikkeliin / julkaisuun.

SPRINGER
doi:10.1007/s00453-024-01280-x
URI
https://doi.org/10.1007/s00453-024-01280-x
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082785891
Tiivistelmä

The Maker-Breaker domination game is a positional game played on a graph by two players called Dominator and Staller. The players alternately select a vertex of the graph that has not yet been chosen. Dominator wins if at some point the vertices she has chosen form a dominating set of the graph. Staller wins if Dominator cannot form a dominating set. Deciding if Dominator has a winning strategy has been shown to be a PSPACE-complete problem even when restricted to chordal or bipartite graphs. In this paper, we consider strategies for Dominator based on partitions of the graph into basic subgraphs where Dominator wins as the second player. Using partitions into cycles and edges (also called perfect [1,2]-factors), we show that Dominator always wins in regular graphs and that deciding whether Dominator has a winning strategy as a second player can be computed in polynomial time for outerplanar and block graphs. We then study partitions into subgraphs with two universal vertices, which is equivalent to considering the existence of pairing dominating sets with adjacent pairs. We show that in interval graphs, Dominator wins if and only if such a partition exists. In particular, this implies that deciding whether Dominator has a winning strategy playing second is in NP for interval graphs. We finally provide an algorithm in nk+3 for interval graphs with at most k nested intervals.

Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste