Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exploring the incremental utility of circulating biomarkers for robust risk prediction of incident atrial fibrillation in European cohorts using regressions and modern machine learning methods

Ojeda Francisco M; Costanzo Simona; Börschel Christin S; Söderberg Stefan; Katsoularis Ioannis; Camen Stephan; Vartiainen Erkki; Donati Maria Benedetta; Kontto Jukka; Bobak Martin; Mathiesen Ellisiv B; Linneberg Allan; Koenig Wolfgang; Løchen Maja-Lisa; Di Castelnuovo Augusto; Blankenberg Stefan; de Gaetano Giovanni; Kuulasmaa Kari; Salomaa Veikko; Iacoviello Licia; Niiranen Teemu; Zeller Tanja; Schnabel Renate B

Exploring the incremental utility of circulating biomarkers for robust risk prediction of incident atrial fibrillation in European cohorts using regressions and modern machine learning methods

Ojeda Francisco M
Costanzo Simona
Börschel Christin S
Söderberg Stefan
Katsoularis Ioannis
Camen Stephan
Vartiainen Erkki
Donati Maria Benedetta
Kontto Jukka
Bobak Martin
Mathiesen Ellisiv B
Linneberg Allan
Koenig Wolfgang
Løchen Maja-Lisa
Di Castelnuovo Augusto
Blankenberg Stefan
de Gaetano Giovanni
Kuulasmaa Kari
Salomaa Veikko
Iacoviello Licia
Niiranen Teemu
Zeller Tanja
Schnabel Renate B
Katso/Avaa
euac260.pdf (1.467Mb)
Lataukset: 

OXFORD UNIV PRESS
doi:10.1093/europace/euac260
URI
https://academic.oup.com/europace/advance-article/doi/10.1093/europace/euac260/6968509
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2023030129032
Tiivistelmä
Aims

To identify robust circulating predictors for incident atrial fibrillation (AF) using classical regressions and machine learning (ML) techniques within a broad spectrum of candidate variables.

Methods and results

In pooled European community cohorts (n = 42 280 individuals), 14 routinely available biomarkers mirroring distinct pathophysiological pathways including lipids, inflammation, renal, and myocardium-specific markers (N-terminal pro B-type natriuretic peptide [NT-proBNP], high-sensitivity troponin I [hsTnI]) were examined in relation to incident AF using Cox regressions and distinct ML methods. Of 42 280 individuals (21 843 women [51.7%]; median [interquartile range, IQR] age, 52.2 [42.7, 62.0] years), 1496 (3.5%) developed AF during a median follow-up time of 5.7 years. In multivariable-adjusted Cox-regression analysis, NT-proBNP was the strongest circulating predictor of incident AF [hazard ratio (HR) per standard deviation (SD), 1.93 (95% CI, 1.82–2.04); P < 0.001]. Further, hsTnI [HR per SD, 1.18 (95% CI, 1.13–1.22); P < 0.001], cystatin C [HR per SD, 1.16 (95% CI, 1.10–1.23); P < 0.001], and C-reactive protein [HR per SD, 1.08 (95% CI, 1.02–1.14); P = 0.012] correlated positively with incident AF. Applying various ML techniques, a high inter-method consistency of selected candidate variables was observed. NT-proBNP was identified as the blood-based marker with the highest predictive value for incident AF. Relevant clinical predictors were age, the use of antihypertensive medication, and body mass index.

Conclusion

Using different variable selection procedures including ML methods, NT-proBNP consistently remained the strongest blood-based predictor of incident AF and ranked before classical cardiovascular risk factors. The clinical benefit of these findings for identifying at-risk individuals for targeted AF screening needs to be elucidated and tested prospectively.

Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste