On monoids of metric preserving functions
Bilet, Viktoriia; Dovgoshey, Oleksiy
On monoids of metric preserving functions
Bilet, Viktoriia
Dovgoshey, Oleksiy
FRONTIERS MEDIA SA
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082790304
https://urn.fi/URN:NBN:fi-fe2025082790304
Tiivistelmä
Let X be a class of metric spaces and let PX be the set of all f : [0, ∞) → [0, ∞) preserving X, i.e., (Y, f ∘ ρ) ∈ X whenever (Y, ρ) ∈ X. For arbitrary subset A of the set of all metric preserving functions, we show that the equality PX = A has a solution if A is a monoid with respect to the operation of function composition. In particular, for the set SI of all amenable subadditive increasing functions, there is a class X of metric spaces such that PX = SI holds.
Kokoelmat
- Rinnakkaistallenteet [27094]