Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic Classification of Strain in the Singing Voice Using Machine Learning

Liu, Yuanyuan; Mittapalle, Kiran Reddy; Yagnavajjula, Madhu Keerthana; Räsänen, Okko; Alku, Paavo; Ikävalko, Tero; Hakanpää, Tua; Öyry, Aleksi; Laukkanen, Anne-Maria

Automatic Classification of Strain in the Singing Voice Using Machine Learning

Liu, Yuanyuan
Mittapalle, Kiran Reddy
Yagnavajjula, Madhu Keerthana
Räsänen, Okko
Alku, Paavo
Ikävalko, Tero
Hakanpää, Tua
Öyry, Aleksi
Laukkanen, Anne-Maria
Katso/Avaa
PIIS0892199725001341.pdf (923.6Kb)
Lataukset: 

Elsevier BV
doi:10.1016/j.jvoice.2025.03.040
URI
https://www.jvoice.org/article/S0892-1997(25)00134-1/fulltext
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082790510
Tiivistelmä

Objectives
Classifying strain in the singing voice can help protect professional singers from vocal overuse and support singing training. This study investigates whether machine learning can automatically classify singing voices into two levels of perceived strain. The singing samples represent two genres: classical and contemporary commercial music (CCM).
Methods
A total of 324 singing voice samples from 15 professional normophonic singers (nine female, six male) were analyzed. Nine singers were classical, and six were CCM singers. The samples consisted of syllable strings produced at three to six pitches and three loudness levels. Based on expert auditory-perceptual ratings, the samples were categorized into two strain levels: normal-mild and moderate-severe. Three acoustic feature sets (mel-frequency cepstral coefficients (MFCCs), the extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS), and wavelet scattering features) were compared using two classifier models [support vector machine (SVM) and multilayer perceptron (MLP)]. Feature selection was performed using recursive feature elimination, and the Mann-Whitney U test was used to assess the discriminative power of the selected features.
Results
The highest classification accuracy of 86.1% was achieved using a subset of wavelet scattering features with the MLP classifier. A comparison between individual features showed that the first MFCC coefficient, representing spectral tilt, exhibited the greatest between-class separation.
Conclusion
This study demonstrates that machine learning models utilizing selected acoustic features can classify perceptual strain of singing voices automatically with high accuracy. These preliminary findings highlight the potential for larger studies involving more diverse singer groups across different genres.

Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste