Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

A methodological framework for analyzing PPGIS data collected in 3D

Hasanzadeh Kamyar; Fagerholm Nora; Skov-Petersen Hans; Olafsson Anton S

A methodological framework for analyzing PPGIS data collected in 3D

Hasanzadeh Kamyar
Fagerholm Nora
Skov-Petersen Hans
Olafsson Anton S
Katso/Avaa
A methodological framework for analyzing PPGIS data collected in 3D.pdf (3.955Mb)
Lataukset: 

TAYLOR & FRANCIS LTD
doi:10.1080/17538947.2023.2250739
URI
https://doi.org/10.1080/17538947.2023.2250739
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082790536
Tiivistelmä
Public participation geographic information system (PPGIS) is a facilitated Volunteered Geographic Information approach and data collection method that aims to capture the spatial experiences of individuals. Although we experience the space around us three-dimensionally, altitude, as the third dimension, has been often absent from PPGIS research and practice. This is largely because of the complexity of implementing surveys in 3D but can also be attributed to a lack of analytical preparedness for using such data. This study complements 3D PPGIS data collected from a pilot study of the Aninkainen block in Turku, Finland with synthetic, i.e. artificially manufactured, data to propose an analytical framework for the study of 3D PPGIS data. The analytical framework divides methods based on the geographical scale into two groups: micro- and macro-scale analysis. In this framework, we propose the use of geospatial metrics to analyze 3D PPGIS data. We argue that while this multidisciplinary area of research is in its infancy, use of intuitive 3D adapted geometric and landscape metrics can help overcome some of complexities associated with use of this emerging participatory data. We conclude by outlining the limitations and envisioning areas for future research.
Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste