Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Building shape-focused pharmacophore models for effective docking screening

Moyano-Gómez, Paola; Lehtonen, Jukka V.; Pentikäinen, Olli T.; Postila, Pekka A.

Building shape-focused pharmacophore models for effective docking screening

Moyano-Gómez, Paola
Lehtonen, Jukka V.
Pentikäinen, Olli T.
Postila, Pekka A.
Katso/Avaa
s13321-024-00857-6.pdf (2.953Mb)
Lataukset: 

BioMed Central
doi:10.1186/s13321-024-00857-6
URI
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-024-00857-6
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082790970
Tiivistelmä
The performance of molecular docking can be improved by comparing the shape similarity of the flexibly sampled poses against the target proteins' inverted binding cavities. The effectiveness of these pseudo-ligands or negative image-based models in docking rescoring is boosted further by performing enrichment-driven optimization. Here, we introduce a novel shape-focused pharmacophore modeling algorithm O-LAP that generates a new class of cavity-filling models by clumping together overlapping atomic content via pairwise distance graph clustering. Top-ranked poses of flexibly docked active ligands were used as the modeling input and multiple alternative clustering settings were benchmark-tested thoroughly with five demanding drug targets using random training/test divisions. In docking rescoring, the O-LAP modeling typically improved massively on the default docking enrichment; furthermore, the results indicate that the clustered models work well in rigid docking. The C+ +/Qt5-based algorithm O-LAP is released under the GNU General Public License v3.0 via GitHub ( https://github.com/jvlehtonen/overlap-toolkit ). SCIENTIFIC CONTRIBUTION: This study introduces O-LAP, a C++/Qt5-based graph clustering software for generating new type of shape-focused pharmacophore models. In the O-LAP modeling, the target protein cavity is filled with flexibly docked active ligands, the overlapping ligand atoms are clustered, and the shape/electrostatic potential of the resulting model is compared against the flexibly sampled molecular docking poses. The O-LAP modeling is shown to ensure high enrichment in both docking rescoring and rigid docking based on comprehensive benchmark-testing.
Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste