Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Electrochemical Design of Gold Nanostructures for Controllable Electrochemical Performance and Scalable Aptamer Sensing Application

Chen, Feixiong; Mostafiz, Bahar; Suni, Johanna; Peltola,Emilia

Electrochemical Design of Gold Nanostructures for Controllable Electrochemical Performance and Scalable Aptamer Sensing Application

Chen, Feixiong
Mostafiz, Bahar
Suni, Johanna
Peltola,Emilia
Katso/Avaa
chen-et-al-2025-electrochemical-design-of-gold-nanostructures-for-controllable-electrochemical-performance-and-scalable.pdf (4.848Mb)
Lataukset: 

American Chemical Society
doi:10.1021/acsanm.5c00962
URI
https://doi.org/10.1021/acsanm.5c00962
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082790981
Tiivistelmä

A simple electrochemical method for designing gold nanostructures was developed by programming deposition potentials, enabling surface nanoengineering of screen-printed electrodes. As a result of this method, we have observed three distinct growth modes of gold nanostructures, which, depending on their various morphologies, are Needle-shaped gold nanostructures (one dimensionally dominated mode), leaf-shaped gold nanostructures (two-dimensionally dominated mode), and coral-shaped gold nanostructures (three-dimensionally dominated mode). All gold nanostructures exhibited an enhanced electrochemical response to the redox solution, improved reversibility, and reduced impedance, compared to the unmodified electrodes, albeit to varying degrees. We demonstrated the superior antifouling performance of the coral-shaped gold nanostructures in a redox solution containing bovine serum albumin, compared to other gold nanostructures. Finally, to assess another aspect of differences in the electrochemical sensing behaviors, we constructed an aptamer sensor for progesterone detection, where the needle-shaped gold nanostructures showed the highest signal gain using Electrochemical Impedance Spectroscopy, in comparison to that of leaf-shaped and coral-shaped gold nanostructures. We envision that the proposed method will potentially enable the design or fabrication of desirable gold nanostructures with increasingly complex or hierarchical structures, bearing promising applications in wide sensing and biomedical applications.

Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste