Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Clinical and biochemical associations of urinary metabolites: quantitative epidemiological approach on renal-cardiometabolic biomarkers

Li Tianqi; Ihanus Andrei; Ohukainen Pauli; Järvelin Marjo-Riitta; Kähönen Mika; Kettunen Johannes; Raitakari Olli T.; Lehtimäki Terho; Mäkinen Ville-Petteri; Tynkkynen Tuulia; Ala-Korpela Mika

Clinical and biochemical associations of urinary metabolites: quantitative epidemiological approach on renal-cardiometabolic biomarkers

Li Tianqi
Ihanus Andrei
Ohukainen Pauli
Järvelin Marjo-Riitta
Kähönen Mika
Kettunen Johannes
Raitakari Olli T.
Lehtimäki Terho
Mäkinen Ville-Petteri
Tynkkynen Tuulia
Ala-Korpela Mika
Katso/Avaa
'Clinical and biochemical.pdf (2.394Mb)
Lataukset: 

doi:10.1093/ije/dyad162
URI
https://academic.oup.com/ije/advance-article/doi/10.1093/ije/dyad162/7455852
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082791051
Tiivistelmä

Background: Urinary metabolomics has demonstrated considerable potential to assess kidney function and its metabolic corollaries in health and disease. However, applications in epidemiology remain sparse due to technical challenges.

Methods: We added 17 metabolites to an open-access urinary nuclear magnetic resonance metabolomics platform, extending the panel to 61 metabolites (n = 994). We also introduced automated quantification for 11 metabolites, extending the panel to 12 metabolites (+creatinine). Epidemiological associations between these 12 metabolites and 49 clinical measures were studied in three independent cohorts (up to 5989 participants). Detailed regression analyses with various confounding factors are presented for body mass index (BMI) and smoking.

Results: Sex-specific population reference concentrations and distributions are provided for 61 urinary metabolites (419 men and 575 women), together with methodological intra-assay metabolite variations as well as the biological intra-individual and epidemiological population variations. For the 12 metabolites, 362 associations were found. These are mostly novel and reflect potential molecular proxies to estimate kidney function, as the associations cannot be simply explained by estimated glomerular filtration rate. Unspecific renal excretion results in leakage of amino acids (and glucose) to urine in all individuals. Seven urinary metabolites associated with smoking, providing questionnaire-independent proxy measures of smoking status in epidemiological studies. Common confounders did not affect metabolite associations with smoking, but insulin had a clear effect on most associations with BMI, including strong effects on 2-hydroxyisobutyrate, valine, alanine, trigonelline and hippurate.

Conclusions: Urinary metabolomics provides new insight on kidney function and related biomarkers on the renal-cardiometabolic system, supporting large-scale applications in epidemiology.

Kokoelmat
  • Rinnakkaistallenteet [27093]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste