Modulus estimates of semirings with applications to boundary extension problems
Golberg, Anatoly; Sugawa, Toshiyuki; Vuorinen, Matti
Modulus estimates of semirings with applications to boundary extension problems
Golberg, Anatoly
Sugawa, Toshiyuki
Vuorinen, Matti
SPRINGER BASEL AG
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082791125
https://urn.fi/URN:NBN:fi-fe2025082791125
Tiivistelmä
In our previous paper (Golberg et al. in Comput Methods Funct Theory 20(3-4):539-558, 2020), we proved that the complementary components of a ring domain in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>n$$\end{document} with large enough modulus may be separated by an annular ring domain and applied this result to boundary correspondence problems under quasiconformal mappings. In the present paper, we continue this work and investigate boundary extension problems for a larger class of mappings.
Kokoelmat
- Rinnakkaistallenteet [27094]