Properties of an Interplanetary Shock Observed at 0.07 and 0.7 au by Parker Solar Probe and Solar Orbiter
Trotta Domenico; Larosa Andrea; Nicolaou Georgios; Horbury Timothy S.; Matteini Lorenzo; Hietala Heli; Blanco-Cano Xochitl; Franci Luca; Chen C. H. K.; Zhao Lingling; Zank Gary P.; Cohen Christina M. S.; Bale Stuart D.; Laker Ronan; Fargette Nais; Valentini Francesco; Khotyaintsev Yuri; Kieokaew Rungployphan; Raouafi Nour; Davies Emma; Vainio Rami; Dresing Nina; Kilpua Emilia; Karlsson Tomas; Owen Christopher J.; Wimmer-Schweingruber Robert F.
Properties of an Interplanetary Shock Observed at 0.07 and 0.7 au by Parker Solar Probe and Solar Orbiter
Trotta Domenico
Larosa Andrea
Nicolaou Georgios
Horbury Timothy S.
Matteini Lorenzo
Hietala Heli
Blanco-Cano Xochitl
Franci Luca
Chen C. H. K.
Zhao Lingling
Zank Gary P.
Cohen Christina M. S.
Bale Stuart D.
Laker Ronan
Fargette Nais
Valentini Francesco
Khotyaintsev Yuri
Kieokaew Rungployphan
Raouafi Nour
Davies Emma
Vainio Rami
Dresing Nina
Kilpua Emilia
Karlsson Tomas
Owen Christopher J.
Wimmer-Schweingruber Robert F.
Institute of Physics Publishing
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082787254
https://urn.fi/URN:NBN:fi-fe2025082787254
Tiivistelmä
The Parker Solar Probe (PSP) and Solar Orbiter (SolO) missions opened a new observational window in the inner heliosphere, which is finally accessible to direct measurements. On 2022 September 5, a coronal mass ejection (CME)-driven interplanetary (IP) shock was observed as close as 0.07 au by PSP. The CME then reached SolO, which was radially well-aligned at 0.7 au, thus providing us with the opportunity to study the shock properties at different heliocentric distances. We characterize the shock, investigate its typical parameters, and compare its small-scale features at both locations. Using the PSP observations, we investigate how magnetic switchbacks and ion cyclotron waves are processed upon shock crossing. We find that switchbacks preserve their V-B correlation while compressed upon the shock passage, and that the signature of ion cyclotron waves disappears downstream of the shock. By contrast, the SolO observations reveal a very structured shock transition, with a population of shock-accelerated protons of up to about 2 MeV, showing irregularities in the shock downstream, which we correlate with solar wind structures propagating across the shock. At SolO, we also report the presence of low-energy (similar to 100 eV) electrons scattering due to upstream shocklets. This study elucidates how the local features of IP shocks and their environments can be very different as they propagate through the heliosphere.
Kokoelmat
- Rinnakkaistallenteet [27094]