Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

A systematic review and meta-analysis of lung cancer risk prediction models

Khalife, Ghida; Nilsson, Matilda; Peltola, Lotta; Waris, Juho; Jekunen, Antti; Leskelä, Riikka-Leena; Andersén, Heidi; Nuutinen, Mikko; Heikkilä, Eija; Nurmi-Rantala, Susanna; Torkki, Paulus

A systematic review and meta-analysis of lung cancer risk prediction models

Khalife, Ghida
Nilsson, Matilda
Peltola, Lotta
Waris, Juho
Jekunen, Antti
Leskelä, Riikka-Leena
Andersén, Heidi
Nuutinen, Mikko
Heikkilä, Eija
Nurmi-Rantala, Susanna
Torkki, Paulus
Katso/Avaa
AO42529.pdf (725.4Kb)
Lataukset: 

Informa UK Limited
doi:10.2340/1651-226X.2025.42529
URI
https://doi.org/10.2340/1651-226x.2025.42529
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082787281
Tiivistelmä

Background: Lung cancer (LC) remains the leading cause of cancer-related mortality worldwide. Early detection through targeted screening significantly improves patient outcomes. However, identifying high-risk individuals remains a critical challenge.

Purpose: This systematic review evaluates externally validated LC risk prediction models to assess their performance and potential applicability in screening strategies.

Methods: Of the 11,805 initial studies, 66 met inclusion criteria and 38 published mainly between 2020 and 2024 were included in the final analysis. Model methodologies, validation approaches, and performance metrics were extracted and compared.

Results: The review identified 18 models utilising conventional machine learning, six employing neural networks, and 14 comparing different predictive frameworks. The Prostate Lung Colorectal and Ovarian Cancer Screening Trial (PLCOm2012) demonstrated superior sensitivity across diverse populations, while newer models, such as Optimized Early Warning model for Lung cancer risk (OWL) and CanPredict, showed promising results. However, differences in population demographics and healthcare systems may limit the generalisability of these models.

Interpretation: While LC risk prediction models have advanced, their applicability to specific healthcare systems, such as Finland's, requires further adaptation and validation. Future research should focus on optimising these models for local contexts to improve clinical impact and cost-effectiveness in targeted screening programmes.

Systematic review registration: PROSPERO CRD42022321391.

Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste