Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Degree growth of lattice equations defined on a 3 × 3 stencil

Hietarinta, Jarmo

Degree growth of lattice equations defined on a 3 × 3 stencil

Hietarinta, Jarmo
Katso/Avaa
2307.03582.pdf (213.4Kb)
Lataukset: 

Episciences
doi:10.46298/ocnmp.11589
URI
https://doi.org/10.46298/ocnmp.11589
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082787283
Tiivistelmä

We study complexity in terms of degree growth of one-component lattice equations defined on a 3 × 3 stencil. The equations include two in Hirota bilinear form and the Boussinesq equations of regular, modified and Schwarzian type. Initial values are given on a staircase or on a corner configuration and depend linearly or rationally on a special variable, for example fn,m = αn,m z + βn,m, in which case we count the degree in z of the iterates. Known integrable cases have linear growth if only one initial values contains z, and quadratic growth if all initial values contain z. Even a small deformation of an integrable equation changes the degree growth from polynomial to exponential, because the deformation will change factorization properties and thereby prevent cancellations.

Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste