Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identifying entrepreneurial discovery processes with weak and strong technology signals: A text mining approach

Bzhalava Levan; Kaivo-oja Jari; Hassan Sohaib S; Gerstlberger Wolfgang D

Identifying entrepreneurial discovery processes with weak and strong technology signals: A text mining approach

Bzhalava Levan
Kaivo-oja Jari
Hassan Sohaib S
Gerstlberger Wolfgang D
Katso/Avaa
006755af-dded-4471-84d9-db1d222c5b8f_14499_-_levan_bzhalava_v2.pdf (844.4Kb)
Lataukset: 

F1000 Research Ltd
doi:10.12688/openreseurope.14499.2
URI
https://open-research-europe.ec.europa.eu/articles/2-26
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2023020726010
Tiivistelmä

This study aims to propose methods for identifying entrepreneurial discovery processes with weak/strong signals of technological changes and incorporating technology foresight in the design and planning of the Smart Specialization Strategy (S3). For this purpose, we first analyse patent abstracts from 2000 to 2009, obtained from the European Patent Office and use a keyword-based text mining approach to collect weak and strong technology signals; the word2vec algorithm is also employed to group weak signal keywords. We then utilize Correlation Explanation (CorEx) topic modelling to link technology weak/strong signals to invention activities for the period 2010-2018 and use the ANOVA statistical method to examine the relationship between technology weak/strong signals and patent values. The results suggest that patents related to weak rather than strong signals are more likely to be high-impact innovations and to serve as a basis for future technological developments. Furthermore, we use latent Dirichlet allocation (LDA) topic modelling to analyse patent activities related to weak/strong technology signals and compute regional topic weights. Finally, we present implications of the research.

Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste