Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Is Deepfake Diversity Real? Analyzing the Diversity of Deepfake Avatars

Kaate, Ilkka; Salminen, Joni; Al Tamime, Reham; Jung, Soon-gyo; Jansen, Bernard J.

Is Deepfake Diversity Real? Analyzing the Diversity of Deepfake Avatars

Kaate, Ilkka
Salminen, Joni
Al Tamime, Reham
Jung, Soon-gyo
Jansen, Bernard J.
Katso/Avaa
1-s2.0-S0957417425000041-main.pdf (4.100Mb)
Lataukset: 

Elsevier
doi:10.1016/j.eswa.2025.126382
URI
https://doi.org/10.1016/j.eswa.2025.126382
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082791545
Tiivistelmä
Deepfake technology is increasingly integrated into global mobile and web services when human representation is not feasible or cost-effective. Our analysis of 202 deepfake avatars from three deepfake providers reveals significant demographic disparities with 18 out of 48 possible demographic groups unrepresented. Deepfake avatars' gender distribution was nearly balanced (49.01% male, 50.99% female), but older age groups (Baby Boomers and Silent Generation) were substantially underrepresented by 64.36% and 76.24%, respectively, relative to the average number of all deepfake avatars. Differences in language representation were present in deepfake avatar providers with only 1.06% of global languages covered. The findings indicate that current deepfake technology lacks diversity, primarily favoring young white individuals, neglecting older demographics, Asians, and Middle Eastern populations, with underrepresentation of 40.59% and 52.48%, respectively, relative to the average number of all deepfake avatars. Only 15.27% of deepfake avatars portray any occupational characteristics. Addressing these diversity gaps is crucial for better serving varied user groups and warrants attention from deepfake providers and caution from those using deepfakes.
Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste