The Role of Momentum Partitioning in Covariance Ion Imaging Analysis
Walmsley Tiffany; McManus Joseph W.; Kumagai Yoshiaki; Nagaya Kiyonobu; Harries James; Iwayama Hiroshi; Ashfold Michael N. R.; Britton Mathew; Bucksbaum Philip H.; Downes-Ward Briony; Driver Taran; Heathcote David; Hockett Paul; Howard Andrew J.; Lee Jason W. L.; Liu Yuson; Kukk Edwin; Milesevic Dennis; Minns Russell S.; Niozu Akinobu; Niskanen Johannes; Orr-Ewing Andrew J.; Owada Shigeki; Robertson Patrick A.; Rolles Daniel; Rudenko Artem; Ueda Kiyoshi; Unwin James; Vallance Claire; Brouard Mark; Burt Michael; Allum Felix; Forbes Ruaridh
The Role of Momentum Partitioning in Covariance Ion Imaging Analysis
Walmsley Tiffany
McManus Joseph W.
Kumagai Yoshiaki
Nagaya Kiyonobu
Harries James
Iwayama Hiroshi
Ashfold Michael N. R.
Britton Mathew
Bucksbaum Philip H.
Downes-Ward Briony
Driver Taran
Heathcote David
Hockett Paul
Howard Andrew J.
Lee Jason W. L.
Liu Yuson
Kukk Edwin
Milesevic Dennis
Minns Russell S.
Niozu Akinobu
Niskanen Johannes
Orr-Ewing Andrew J.
Owada Shigeki
Robertson Patrick A.
Rolles Daniel
Rudenko Artem
Ueda Kiyoshi
Unwin James
Vallance Claire
Brouard Mark
Burt Michael
Allum Felix
Forbes Ruaridh
American Chemical Society
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082787636
https://urn.fi/URN:NBN:fi-fe2025082787636
Tiivistelmä
We present results from a covariance ion imaging study, which employs extensive filtering, on the relationship between fragment momenta to gain deeper insight into photofragmentation dynamics. A new data analysis approach is introduced that considers the momentum partitioning between the fragments of the breakup of a molecular polycation to disentangle concurrent fragmentation channels, which yield the same ion species. We exploit this approach to examine the momentum exchange relationship between the products, which provides direct insight into the dynamics of molecular fragmentation. We apply these techniques to extensively characterize the dissociation of 1-iodopropane and 2-iodopropane dications prepared by site-selective ionization of the iodine atom using extreme ultraviolet intense femtosecond laser pulses with a photon energy of 95 eV. Our assignments are supported by classical simulations, using parameters largely obtained directly from the experimental data.
Kokoelmat
- Rinnakkaistallenteet [27094]
