Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hybrid FE-ML model for turning of 42CrMo4 steel

Laakso; Sampsa Vili Antero; Mityakov, Andrey; Niinimäki, Tom; Ribeiro; Kandice Suane Barros; Bessa, Wallace Moreira

Hybrid FE-ML model for turning of 42CrMo4 steel

Laakso
Sampsa Vili Antero
Mityakov, Andrey
Niinimäki, Tom
Ribeiro
Kandice Suane Barros
Bessa, Wallace Moreira
Katso/Avaa
1-s2.0-S1755581724001597-main.pdf (4.731Mb)
Lataukset: 

Elsevier BV
doi:10.1016/j.cirpj.2024.10.003
URI
https://doi.org/10.1016/j.cirpj.2024.10.003
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082787655
Tiivistelmä
Metal cutting processes contribute significant share of the added value of industrial products. The need for machining has grown exponentially with increasing demands for quality and accuracy, and despite of more than a century of research in the field, there are no reliable and accurate models that describe all the physical phenomena needed to optimize the machining processes. The scientific community has begun to explore hybrid methods instead of expanding the capabilities of individual modelling schemes, which has been more efficient than efficacious direction. Following this trend, we propose a hybrid finite element — machine learning method (FEML) for modelling metal cutting. The advantages of the FEML method are reduced need for experimental data, reduced computational time and improved prediction accuracy. This paper describes the FEML model, which uses a Coupled Eulerian Lagrangian (CEL) formulation and deep neural networks (DNN) from the TensorFlow Python library. The machining experiments include forces, chip morphology and surface roughness. The experimental data was divided into training dataset and validation dataset to confirm the model predictions outside the experimental data range. The hybrid FEML model outperformed the DNN and FEM models independently, by reducing the computational time, improving the average prediction error from 23% to 13% and reduced the need for experimental data by half.
Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste