Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Estimating diagnostic uncertainty in artificial intelligence assisted pathology using conformal prediction

Olsson Henrik; Kartasalo Kimmo; Mulliqi Nita; Capuccini Marco; Ruusuvuori Pekka; Samaratunga Hemamali; Delahunt Brett; Lindskog Cecilia; Janssen Emiel A.M.; Blilie Anders; Egevad Lars; Spjuth Ola; Eklund Martin

Estimating diagnostic uncertainty in artificial intelligence assisted pathology using conformal prediction

Olsson Henrik
Kartasalo Kimmo
Mulliqi Nita
Capuccini Marco
Ruusuvuori Pekka
Samaratunga Hemamali
Delahunt Brett
Lindskog Cecilia
Janssen Emiel A.M.
Blilie Anders
Egevad Lars
Spjuth Ola
Eklund Martin
Katso/Avaa
s41467-022-34945-8.pdf (1.255Mb)
Lataukset: 

Nature Research
doi:10.1038/s41467-022-34945-8
URI
https://www.nature.com/articles/s41467-022-34945-8
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2023020726012
Tiivistelmä

Unreliable predictions can occur when an artificial intelligence (AI) system is presented with data it has not been exposed to during training. We demonstrate the use of conformal prediction to detect unreliable predictions, using histopathological diagnosis and grading of prostate biopsies as example. We digitized 7788 prostate biopsies from 1192 men in the STHLM3 diagnostic study, used for training, and 3059 biopsies from 676 men used for testing. With conformal prediction, 1 in 794 (0.1%) predictions is incorrect for cancer diagnosis (compared to 14 errors [2%] without conformal prediction) while 175 (22%) of the predictions are flagged as unreliable when the AI-system is presented with new data from the same lab and scanner that it was trained on. Conformal prediction could with small samples (N = 49 for external scanner, N = 10 for external lab and scanner, and N = 12 for external lab, scanner and pathology assessment) detect systematic differences in external data leading to worse predictive performance. The AI-system with conformal prediction commits 3 (2%) errors for cancer detection in cases of atypical prostate tissue compared to 44 (25%) without conformal prediction, while the system flags 143 (80%) unreliable predictions. We conclude that conformal prediction can increase patient safety of AI-systems.

Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste