Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Empirical evaluation of amplifying privacy by subsampling for GANs to create differentially private synthetic tabular data

Nieminen Valtteri A.; Pahikkala Tapio; Airola Antti

Empirical evaluation of amplifying privacy by subsampling for GANs to create differentially private synthetic tabular data

Nieminen Valtteri A.
Pahikkala Tapio
Airola Antti
Katso/Avaa
paper06.pdf (2.603Mb)
Lataukset: 

URI
https://ceur-ws.org/Vol-3506/
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082787704
Tiivistelmä

Privacy concerns often limit sharing sensitive data collected from individuals. One proposed solution to make secondary use possible is privacy-preserving synthetic data that attempts to mimic real data. Due to their success on non-private tasks, GAN networks trained with differentially private stochastic gradient descent (DPSGD) have been popular for generating DP synthetic data. In recent years, a prominent approach to achieving better privacy guarantees has been to train ensembles of discriminator networks with DPSDG on mutually exclusive subsets to obtain better differential privacy guarantees by taking advantage of the synergy between GANs and privacy amplification by subsampling. However, this research has been done almost exclusively on images, and empirical evaluations of this strategy on other types of data are lacking. This work focuses on the effects of subsampling in creating DP synthetic tabular data with GANs. We evaluate synthetic data utility by training classification models on synthetic- and testing on real data at varying subsampling rates. Further, we complement the evaluation with a qualitative examination of the generated data. Our findings show that while subsampling does bring benefits with tabular data in terms of the prediction performance for classifiers trained on synthetic data, the resulting samples can be very distorted compared to original real data. The results suggest that the benefits obtainable via this method of training DP GAN can differ significantly based on the type of data used.

Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste