Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep learning facilitates multi-data type analysis and predictive biomarker discovery in cancer precision medicine

Mathema Vivek Bhakta; Sen Partho; Lamichhane Santosh; Orešič Matej; Khoomrung Sakda

Deep learning facilitates multi-data type analysis and predictive biomarker discovery in cancer precision medicine

Mathema Vivek Bhakta
Sen Partho
Lamichhane Santosh
Orešič Matej
Khoomrung Sakda
Katso/Avaa
1-s2.0-S2001037023000405-main.pdf (6.114Mb)
Lataukset: 

Research Network of Computational and Structural Biotechnology
doi:10.1016/j.csbj.2023.01.043
URI
https://doi.org/10.1016/j.csbj.2023.01.043
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2023030329518
Tiivistelmä
Cancer progression is linked to gene-environment interactions that alter cellular homeostasis. The use of biomarkers as early indicators of disease manifestation and progression can substantially improve diagnosis and treatment. Large omics datasets generated by high-throughput profiling technologies, such as microarrays, RNA sequencing, whole-genome shotgun sequencing, nuclear magnetic resonance, and mass spectrometry, have enabled data-driven biomarker discoveries. The identification of differentially expressed traits as molecular markers has traditionally relied on statistical techniques that are often limited to linear parametric modeling. The heterogeneity, epigenetic changes, and high degree of polymorphism observed in oncogenes demand biomarker-assisted personalized medication schemes. Deep learning (DL), a major subunit of machine learning (ML), has been increasingly utilized in recent years to investigate various diseases. The combination of ML/DL approaches for performance optimization across multi-omics datasets produces robust ensemble-learning prediction models, which are becoming useful in precision medicine. This review focuses on the recent development of ML/DL methods to provide integrative solutions in discovering cancer-related biomarkers, and their utilization in precision medicine.
Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste