Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Leveraging Movement Representation from Contrastive Learning for Asteroid Detection

Kongsathitporn, Noppachanin; Supratak, Akara; Noysena, Kanthanakorn; Awiphan, Supachai; Steeghs, Danny; Pollacco, Don; Ulaczyk, Krzysztof; Lyman, Joseph; Ackley, Kendall; O'Neill, David; Kumar, Amit; Galloway, Duncan K.; Jiménez-Ibarra, Felipe; Dhillon, Vik. S.; Dyer, Martin J.; O'Brien, Paul; Ramsay, Gavin; Palle, Enric; Kotak, Rubin; Killestein, Thomas L.; Nuttall, Laura K.; Breton, Rene P.

Leveraging Movement Representation from Contrastive Learning for Asteroid Detection

Kongsathitporn, Noppachanin
Supratak, Akara
Noysena, Kanthanakorn
Awiphan, Supachai
Steeghs, Danny
Pollacco, Don
Ulaczyk, Krzysztof
Lyman, Joseph
Ackley, Kendall
O'Neill, David
Kumar, Amit
Galloway, Duncan K.
Jiménez-Ibarra, Felipe
Dhillon, Vik. S.
Dyer, Martin J.
O'Brien, Paul
Ramsay, Gavin
Palle, Enric
Kotak, Rubin
Killestein, Thomas L.
Nuttall, Laura K.
Breton, Rene P.
Katso/Avaa
Kongsathitporn_2024_PASP_136_124507.pdf (2.830Mb)
Lataukset: 

IOP Publishing Ltd
doi:10.1088/1538-3873/ad8c83
URI
https://iopscience.iop.org/article/10.1088/1538-3873/ad8c83
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082788000
Tiivistelmä
To support asteroid-related studies, current motion detectors are utilized to select moving object candidates based on their visualizations and movements in sequences of sky exposures. However, the existing detectors encounter the manual parameter settings which require experts to assign proper parameters. Moreover, although the deep learning approach could automate the detection process, these approaches still require synthetic images and hand-engineered features to improve their performance. In this work, we propose an end-to-end deep learning model consisting of two branches. The first branch is trained with contrastive learning to extract a contrastive feature from sequences of sky exposures. This learning method encourages the model to capture a lower-dimensional representation, ensuring that sequences with moving sources (i.e., potential asteroids) are distinct from those without moving sources. The second branch is designed to learn additional features from the sky exposure sequences, which are then concatenated into the movement features before being processed by subsequent layers for the detection of asteroid candidates. We evaluate our model on sufficiently long-duration sequences and perform a comparative study with detection software. Additionally, we demonstrate the use of our model to suggest potential asteroids using photometry filtering. The proposed model outperforms the baseline model for asteroid streak detection by +7.70% of f1-score. Moreover, our study shows promising performance for long-duration sequences and improvement after adding the contrastive feature. Additionally, we demonstrate the uses of our model with the filtering to detect potential asteroids in wide-field detection using the long-duration sequences. Our model could complement the software as it suggests additional asteroids to its detection result.
Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste