Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Consistent and effective method to define the mouse estrous cycle stage by a deep learning-based model

Strauss Leena; Junnila Arttu; Wärri Anni; Manti Maria; Jiang Yiwen; Löyttyniemi Eliisa; Stener-Victorin Elisabet; Lagerquist Marie K; Kukoricza Krisztina; Heinosalo Taija; Blom Sami; Poutanen Matti

Consistent and effective method to define the mouse estrous cycle stage by a deep learning-based model

Strauss Leena
Junnila Arttu
Wärri Anni
Manti Maria
Jiang Yiwen
Löyttyniemi Eliisa
Stener-Victorin Elisabet
Lagerquist Marie K
Kukoricza Krisztina
Heinosalo Taija
Blom Sami
Poutanen Matti
Katso/Avaa
Consistent and effective method to define the_100424.pdf (905.6Kb)
Lataukset: 

Bioscientifica
doi:10.1530/JOE-23-0204
URI
https://joe.bioscientifica.com/view/journals/joe/aop/joe-23-0204/joe-23-0204.xml
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082788069
Tiivistelmä
The mouse estrous cycle is divided into four stages: proestrus (P), estrus (E), metestrus (M) and diestrus (D). The estrous cycle affects reproductive hormone levels in a wide variety of tissues. Therefore, to obtain reliable results from female mice, it is important to know the estrous cycle stage during sampling. The stage can be analyzed from a vaginal smear under a microscope. However, it is time-consuming, and the results vary between evaluators. Here, we present an accurate and reproducible method for staging the mouse estrous cycle in digital whole slide images (WSIs) of vaginal smears. We developed a model using a deep convolutional neural network (CNN) in a cloud-based platform, Aiforia Create. The CNN was trained by supervised pixel-level multiclass semantic segmentation of image features from 171 hematoxylin-stained samples. The model was validated by comparing the results obtained by CNN with those of four independent researchers. The validation data included three separate studies comprising altogether 148 slides. The total agreement attested by the Fleiss kappa value between the validators and the CNN was excellent (0.75), and when D, E and P were analyzed separately, the kappa values were 0.89, 0.79 and 0.74, respectively. The M stage is short and not well defined by the researchers. Thus, identification of the M stage by the CNN was challenging due to the lack of proper ground truth, and the kappa value was 0.26. We conclude that our model is reliable and effective for classifying the estrous cycle stages in female mice.
Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste