Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

How Artificial Intelligence–Based Digital Rehabilitation Improves End-User Adherence: A Rapid Review

MohammadNamdar, Mahsa; Lowery Wilson, Michael; Murtonen, Kari-Pekka; Aartolahti, Eeva; Oduor, Michael; Korniloff, Katariina

How Artificial Intelligence–Based Digital Rehabilitation Improves End-User Adherence: A Rapid Review

MohammadNamdar, Mahsa
Lowery Wilson, Michael
Murtonen, Kari-Pekka
Aartolahti, Eeva
Oduor, Michael
Korniloff, Katariina
Katso/Avaa
rehab-2025-1-e69763.pdf (369.1Kb)
Lataukset: 

JMIR Publications Inc.
doi:10.2196/69763
URI
https://doi.org/10.2196/69763
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082788114
Tiivistelmä

Background: The integration of artificial intelligence (AI) in rehabilitation technology is transforming traditional methods, focusing on personalization and improved outcomes. The growing area of AI in digital rehabilitation (DR) emphasizes the critical role of end-user compliance with rehabilitation programs. Analyzing how AI-driven DR tools can boost this compliance is vital for creating sustainable practices and tackling future challenges.

Objective: This study seeks to assess how AI-based DR can improve the end-user compliance or adherence to rehabilitation.

Methods: Following the updated recommendations for the Cochrane rapid review methods guidance and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, a systematic literature search strategy was led in PubMed, which yielded 922 records, resulting in 6 papers included in this study.

Results: The reviewed studies identified 6 key ways in which AI enhances end-user compliance in rehabilitation. The most prevalent method (in 4 studies) involves motivating and engaging users through features like exercise tracking and motivational content. The second method, also noted in 4 studies, focuses on improving communication and information exchange between health care providers and users. Personalized solutions tailored to individual cognitive styles and attitudes were highlighted in 3 studies. Ease of use and system usability, affecting user acceptability, emerged in 2 studies. Additionally, daily notifications, alerts, and reminders were identified as strategies to promote compliance, also noted in 2 studies. While 5 studies looked at AI's role in improving adherence, 1 study specifically assessed AI's capability for objective compliance measurement, contrasting it with traditional subjective self-reports.

Conclusions: Our results could be especially relevant and beneficial for rethinking rehabilitation practices and devising effective strategies for the integration of AI in the rehabilitation field, aimed at enhancing end-user adherence to the rehabilitation regimen.

Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste