Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction of Early Adverse Events After THA : A Comparison of Different Machine-Learning Strategies Based on 262,356 Observations From the Nordic Arthroplasty Register Association (NARA) Dataset

Venäläinen, Mikko S.; Panula, Valtteri J.; Eskelinen, Antti P.; Fenstad, Anne Marie; Furnes, Ove; Hallan, Geir; Rolfson, Ola; Kärrholm, Johan; Hailer, Nils P.; Pedersen, Alma B.; Overgaard, Søren; Mäkelä, Keijo T.; Elo, Laura L.

Prediction of Early Adverse Events After THA : A Comparison of Different Machine-Learning Strategies Based on 262,356 Observations From the Nordic Arthroplasty Register Association (NARA) Dataset

Venäläinen, Mikko S.
Panula, Valtteri J.
Eskelinen, Antti P.
Fenstad, Anne Marie
Furnes, Ove
Hallan, Geir
Rolfson, Ola
Kärrholm, Johan
Hailer, Nils P.
Pedersen, Alma B.
Overgaard, Søren
Mäkelä, Keijo T.
Elo, Laura L.
Katso/Avaa
ACR Open Rheumatology - 2024 - Venäläinen - Prediction of Early Adverse.pdf (510.5Kb)
Lataukset: 

Wiley
doi:10.1002/acr2.11709
URI
https://acrjournals.onlinelibrary.wiley.com/doi/10.1002/acr2.11709
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082792414
Tiivistelmä

Objective: Preoperative risk prediction models can support shared decision-making before total hip arthroplasties (THAs). Here, we compare different machine-learning (ML) approaches to predict the six-month risk of adverse events following primary THA to obtain accurate yet simple-to-use risk prediction models.

Methods: We extracted data on primary THAs (N = 262,356) between 2010 and 2018 from the Nordic Arthroplasty Register Association dataset. We benchmarked a variety of ML algorithms in terms of the area under the receiver operating characteristic curve (AUROC) for predicting the risk of revision caused by periprosthetic joint infection (PJI), dislocation or periprosthetic fracture (PPF), and death. All models were internally validated against a randomly selected test cohort (one-third of the data) that was not used for training the models.

Results: The incidences of revisions because of PJI, dislocation, and PPF were 0.8%, 0.4%, and 0.3%, respectively, and the incidence of death was 1.2%. Overall, Lasso regression with stable iterative variable selection (SIVS) produced models using only four to five input variables but with AUROC comparable to more complex models using all 32 variables available. The SIVS-based Lasso models based on age, sex, preoperative diagnosis, bearing couple, fixation, and surgical approach predicted the risk of revisions caused by PJI, dislocations, and PPF, as well as death, with AUROCs of 0.61, 0.67, 0.76, and 0.86, respectively.

Conclusion: Our study demonstrates that satisfactory predictive potential for adverse events following THA can be reached with parsimonious modeling strategies. The SIVS-based Lasso models may serve as simple-to-use tools for clinical risk assessment in the future.

Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste