Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine learning and deep learning for safety applications: Investigating the intellectual structure and the temporal evolution

Leoni Leonardo; Bahootoroody Ahmad; Abaei Mohammad Mahdi; Cantini Alessandra; Bahootoroody Farshad; De Carlo Filippo

Machine learning and deep learning for safety applications: Investigating the intellectual structure and the temporal evolution

Leoni Leonardo
Bahootoroody Ahmad
Abaei Mohammad Mahdi
Cantini Alessandra
Bahootoroody Farshad
De Carlo Filippo
Katso/Avaa
1-s2.0-S0925753523003053-main.pdf (25.88Mb)
Lataukset: 

ELSEVIER
doi:10.1016/j.ssci.2023.106363
URI
https://doi.org/10.1016/j.ssci.2023.106363
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082788369
Tiivistelmä
Over the last decades, safety requirements have become of primary concern. In the context of safety, several strategies could be pursued in many engineering fields. Moreover, many techniques have been proposed to deal with safety, risk, and reliability matters, such as Machine Learning (ML) and Deep Learning (DL). ML and DL are characterised by a high variety of algorithms, adaptable for different purposes. This generated wide and fragmented literature on ML and DL for safety purposes, moreover, literature review and bibliometric studies of the past years mainly focus on a single research area or application field. Thus, this paper aims to provide a holistic understanding of the research on this topic through a Systematic Bibliometric Analysis (SBA), along with proposing a viable option to conduct SBAs. The focus is on investigating the main research areas, application fields, relevant authors and studies, and temporal evolution. It emerged that rotating equipment, structural health monitoring, batteries, aeroengines, and turbines are popular fields. Moreover, the results depicted an increase in popularity of DL, along with new approaches such as deep reinforcement learning through the past four years. The proposed workflow for SBA has the potential to benefit researchers from multiple disciplines, beyond safety science.
Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste