Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dissecting Bioelectrical Networks in Photosynthetic Membranes with Electrochemistry

Lawrence, Joshua M.; Egan, Rachel M.; Wey, Laura T.; Bali, Karan; Chen, Xiaolong; Kosmutzky, Darius; Eyres, Mairi; Nan, Lan; Wood, Mary H.; Nowaczyk, Marc M.; Howe, Christopher J.; Zhang, Jenny Z.

Dissecting Bioelectrical Networks in Photosynthetic Membranes with Electrochemistry

Lawrence, Joshua M.
Egan, Rachel M.
Wey, Laura T.
Bali, Karan
Chen, Xiaolong
Kosmutzky, Darius
Eyres, Mairi
Nan, Lan
Wood, Mary H.
Nowaczyk, Marc M.
Howe, Christopher J.
Zhang, Jenny Z.
Katso/Avaa
lawrence-et-al-2025-dissecting-bioelectrical-networks-in-photosynthetic-membranes-with-electrochemistry.pdf (7.768Mb)
Lataukset: 

American Chemical Society (ACS)
doi:10.1021/jacs.5c08519
URI
https://doi.org/10.1021/jacs.5c08519
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082792534
Tiivistelmä
Photosynthetic membranes contain complex networks of redox proteins and molecules, which direct electrons along various energy-to-chemical interconversion reactions important for sustaining life on Earth. Analyzing and disentangling the mechanisms, regulation, and interdependencies of these electron transfer pathways is extremely difficult, owing to the large number of interacting components in the native membrane environment. While electrochemistry is well established for studying electron transfer in purified proteins, it has proved difficult to wire into proteins within their native membrane environments and even harder to probe on a systems-level the electron transfer networks they are entangled within. Here, we show how photosynthetic membranes from cyanobacteria can be wired to electrodes to access their complex electron transfer networks. Measurements of native membranes with structured electrodes revealed distinctive electrochemical signatures, enabling analysis from the scale of individual proteins to entire biochemical pathways as well as their interplay. This includes measurements of overlapping photosynthetic and respiratory pathways, the redox activities of membrane-bound quinones, along with validation using in operando spectroscopic measurements. Importantly, we further demonstrated extraction of electrons from native membrane-bound Photosystem I at -600 mV versus SHE, which is similar to 1 V more negative than from purified photosystems. This finding opens up opportunities for biotechnologies for solar electricity, fuel, and chemical generation. We foresee this electrochemical method being adapted to analyze other photosynthetic and nonphotosynthetic membranes, as well as aiding the development of new biocatalytic, biohybrid, and biomimetic systems.
Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste