Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Expanding interpretability through complexity reduction in machine learning‐based modelling of cardiovascular disease: A myocardial perfusion imaging PET/CT prognostic study

Lehtonen, Eero; Teuho, Jarmo; Vatandoust, Monire; Knuuti, Juhani; Knol, Remco J. J.; van der Zant, Friso M.; Juarez-Orozco, Luis Eduardo; Klen, Riku

Expanding interpretability through complexity reduction in machine learning‐based modelling of cardiovascular disease: A myocardial perfusion imaging PET/CT prognostic study

Lehtonen, Eero
Teuho, Jarmo
Vatandoust, Monire
Knuuti, Juhani
Knol, Remco J. J.
van der Zant, Friso M.
Juarez-Orozco, Luis Eduardo
Klen, Riku
Katso/Avaa
Eur J Clin Investigation - 2025 - Lehtonen - Expanding interpretability through complexity reduction in machine.pdf (5.801Mb)
Lataukset: 

Wiley-Blackwell
doi:10.1111/eci.14391
URI
https://doi.org/10.1111/eci.14391
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082788580
Tiivistelmä

Background

Machine learning-based analysis can be used in myocardial perfusion imaging data to improve risk stratification and the prediction of major adverse cardiovascular events for patients with suspected or established coronary artery disease. We present a new machine learning approach for the identification of patients who develop major adverse cardiovascular events. The new method is robust against the deleterious effect of outliers in the training set stratification and training process.

Methods

The proposed sum-of-sigmoids model is obtained by averaging the contributions of various input variables in an ensemble of XGBoost models. To illustrate its performance, we have applied it to predict major adverse cardiovascular events from advanced imaging data extracted from rest and adenosine stress 13N-ammonia positron emission tomography myocardial perfusion imaging polar maps. There were 1185 individual studies performed, and the event occurrence was tracked over a follow-up period of 2 years.

Results

The sum-of-sigmoids model achieved a prediction accuracy of .83 on the test set, matching the performance of significantly more complex and less interpretable models (whose accuracies were .83–.84).

Conclusion

The sum-of-sigmoids model is interpretable and simple, while achieving similar prediction accuracy to significantly more complex machine learning models in the considered prediction task. It should be suitable for applications such as automated clinical risk stratification, where clear and explicit justification of the classification procedure is highly pertinent.

Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste