Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bioplausible Synaptic Behavior of Al/Gd0.3Ca0.7MnO3/Au Memristive Devices for Unsupervised Spiking Neural Networks

Hynnä Teemu; Schulman Alejandro; Lähteenlahti Ville; Huhtinen Hannu; Paturi Petriina

Bioplausible Synaptic Behavior of Al/Gd0.3Ca0.7MnO3/Au Memristive Devices for Unsupervised Spiking Neural Networks

Hynnä Teemu
Schulman Alejandro
Lähteenlahti Ville
Huhtinen Hannu
Paturi Petriina
Katso/Avaa
hynnä-et-al-2023-bioplausible-synaptic-behavior-of-al-gd0-3ca0-7mno3-au-memristive-devices-for-unsupervised-spiking.pdf (2.116Mb)
Lataukset: 

American Chemical Society
doi:10.1021/acsaelm.3c01273
URI
https://doi.org/10.1021/acsaelm.3c01273
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082792674
Tiivistelmä

Inspired by the biological nervous system, unsupervised spiking neural networks (SNNs) with the spike-timing-dependent plasticity (STDP) learning rule have been considered as the next-generation artificial neural networks (ANNs). However, to construct a functional SNN with high pattern recognition accuracy and low power consumption, hardware elements that present synaptic behavior still need to be developed. In this work, we studied Gd0.3Ca0.7MnO3 (GCMO)-based memristive devices comprised of an asymmetrical electrode configuration, Al/GCMO/Au. We verified its switching properties, focusing on single pulse switching and its usability as artificial synapse by means of the STDP learning rule. The dynamic range is well controlled by the pulse amplitude and width, and the conductance change shows a clear dependence on the interval between the pulses. Moreover, pattern recognition accuracy (>87%) is obtained in biologically plausible unsupervised SNN simulations when the device characteristics are utilized as the synaptic weight in the network. The results shed some light on the complexity of the operation of the devices for utilization in unsupervised SNNs, that is, the evolution of the ANNs for which the first proof-of-concept is currently being reported. Additionally, the bioplausibility of the simulated network opens the door to considering biohybrid systems and their enormous application possibilities.

Kokoelmat
  • Rinnakkaistallenteet [27094]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste