Detection of disk-jet coprecession in a tidal disruption event
Wang, Yanan; Lin, Zikun; Wu, Linhui; Lei, Wei-Hua; Wei, Shuyuan; Zhang, Shuang-Nan; Ji, Long; del Palacio, Santiago; Baldi, Ranieri D.; Huang, Yang; Liu, Ji-Feng; Zhang, Bing; Yang, Aiyuan; Chen, Ru-Rong; Zhang, Yangwei; Wang, Ai-Ling; Yang, Lei; Charalampopoulos, Panos; Williams-Baldwin, David R. A.; Yao, Zhu-Heng; Xie, Fu-Guo; Bu, Defu; Feng, Hua; Cao, Xinwu; Wu, Hongzhou; Li, Wenxiong; Qiao, Erlin; Leloudas, Giorgos; Anderson, Joseph P.; Shu, Xinwen; Pasham, Dheeraj R.; Zou, Hu; Nicholl, Matt; Wevers, Thomas; Müller-Bravo, Tomás E.; Wang, Jing; Wei, Jian-Yan; Qiu, Yu-Lei; Guo, Wei-Jian; Gutiérrez, Claudia P.; Gromadzki, Mariusz; Inserra, Cosimo; Makrygianni, Lydia; Onori, Francesca; Petrushevska, Tanja; Altamirano, Diego; Galbany, Lluís; Peréz-Torres, Miguel; Chen, Ting-Wan
https://urn.fi/URN:NBN:fi-fe202601215561
Tiivistelmä
Theories and simulations predict that intense space-time curvature near black holes bends the trajectories of light and matter, driving disk and jet precession under relativistic torques. However, direct observational evidence of disk-jet coprecession remains elusive. Here, we report the most compelling case to date: a tidal disruption event (TDE) exhibiting unprecedented 19.6-day quasi-periodic variations in both x-rays and radio, with x-ray amplitudes exceeding an order of magnitude. The nearly synchronized x-ray and radio variations suggest a shared mechanism regulating the emission regions. We demonstrate that a disk-jet Lense-Thirring precession model successfully reproduces these variations while requiring a low-spin black hole. This study uncovers previously uncharted short-term radio variability in TDEs, highlights the transformative potential of high-cadence radio monitoring, and offers profound insights into disk-jet physics.
Kokoelmat
- Rinnakkaistallenteet [29337]
