Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Federated learning in intrusion detection: advancements, applications, and future directions

Buyuktanir, Busra; Altinkaya, Şahsene; Karatas, Baydogmus Gozde; Yildiz, Kazim

Federated learning in intrusion detection: advancements, applications, and future directions

Buyuktanir, Busra
Altinkaya, Şahsene
Karatas, Baydogmus Gozde
Yildiz, Kazim
Katso/Avaa
s10586-025-05325-w.pdf (1.899Mb)
Lataukset: 

Springer Science and Business Media LLC
doi:10.1007/s10586-025-05325-w
URI
https://doi.org/10.1007/s10586-025-05325-w
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe202601216868
Tiivistelmä

Federated Learning (FL) has emerged as a promising distributed machine learning approach that addresses confidentiality and integrity concerns in various sectors, including Internet of Things (IoT), healthcare, finance, and cybersecurity. In order to improve privacy protection and detection accuracy in decentralized systems, this study investigates the incorporation of FL into Intrusion Detection Systems (IDS). FL is especially useful in situations where data security and privacy are crucial because it allows for the cooperative training of models without centralizing sensitive data. We examine many FL-based IDS solutions across several domains, emphasizing how well they mitigate data breaches, maintain confidentiality, and enhance intrusion detection capabilities. The use of Generative Adversarial Networks (GANs), artificial immune systems, and hybrid deep learning techniques to maximize IDS performance are among the current developments in FL methodology that are covered in the paper. We also look at issues like the requirement for effective aggregation procedures and non-independent and identically distributed (non-IID) data. Finally, we outline future directions and open research topics to improve the scalability, resilience, and effectiveness of FL-based IDS solutions in practical applications.

Kokoelmat
  • Rinnakkaistallenteet [29337]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste