Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

General-Purpose Deep Learning Detection and Segmentation Models for Images from a Lidar-Based Camera Sensor

Yu Xianjia; Salimpour Sahar; Peña Queralta Jorge; Westerlund Tomi

General-Purpose Deep Learning Detection and Segmentation Models for Images from a Lidar-Based Camera Sensor

Yu Xianjia
Salimpour Sahar
Peña Queralta Jorge
Westerlund Tomi
Katso/Avaa
sensors-23-02936.pdf (5.244Mb)
Lataukset: 

MDPI
doi:10.3390/s23062936
URI
https://www.mdpi.com/1424-8220/23/6/2936
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2023042739027
Tiivistelmä
Over the last decade, robotic perception algorithms have significantly benefited from the rapid advances in deep learning (DL). Indeed, a significant amount of the autonomy stack of different commercial and research platforms relies on DL for situational awareness, especially vision sensors. This work explored the potential of general-purpose DL perception algorithms, specifically detection and segmentation neural networks, for processing image-like outputs of advanced lidar sensors. Rather than processing the three-dimensional point cloud data, this is, to the best of our knowledge, the first work to focus on low-resolution images with a 360 degrees field of view obtained with lidar sensors by encoding either depth, reflectivity, or near-infrared light in the image pixels. We showed that with adequate preprocessing, general-purpose DL models can process these images, opening the door to their usage in environmental conditions where vision sensors present inherent limitations. We provided both a qualitative and quantitative analysis of the performance of a variety of neural network architectures. We believe that using DL models built for visual cameras offers significant advantages due to their much wider availability and maturity compared to point cloud-based perception.
Kokoelmat
  • Rinnakkaistallenteet [29337]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste