Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Breakpoints in Iterative Development and Interdisciplinary Collaboration of AI-Driven Automated Assessment

Huang, Xiaoshan; Chang, Li-Hsin; Veermans, Koen; Ginter, Filip

Breakpoints in Iterative Development and Interdisciplinary Collaboration of AI-Driven Automated Assessment

Huang, Xiaoshan
Chang, Li-Hsin
Veermans, Koen
Ginter, Filip
Katso/Avaa
Huang_Chang_2024_ Breakpoints in iterative development.pdf (3.694Mb)
Lataukset: 

doi:10.1109/ITHET61869.2024.10837673
URI
https://ieeexplore.ieee.org/document/10837673
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2025082786836
Tiivistelmä

The rise of AI in education has led to significant advancements, promoting automated grading to reduce educator workload and to enhance pedagogy. However, its integration raises complex pedagogical, ethical, and technical questions. This systematic review examines the intersection of automated grading tool development and educational assessment through the lens of the activity theory. Our analysis, informed by literature since 2010, reveals a critical need for comprehensive evaluation frameworks addressing the iterative nature of technology development and interdisciplinary collaboration. Key breakpoints in existing studies include oversight of the reliability and validity of assessments, ethical considerations, coherent evaluation rules, interdisciplinary collaboration, and agentive and constructive roles of users. Addressing these issues requires a holistic approach that bridges technical and educational perspectives, fostering trust and supporting meaningful learning outcomes. Enhanced collaboration and ongoing professional development are crucial for creating AI-driven assessments.

Kokoelmat
  • Rinnakkaistallenteet [29337]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste