Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automating customer feedback analysis in E-commerce: A multi-Model approach

Davoodi, Laleh; Mezei, József; Nikou, Shahrokh; Espinosa-Leal, Leonardo

Automating customer feedback analysis in E-commerce: A multi-Model approach

Davoodi, Laleh
Mezei, József
Nikou, Shahrokh
Espinosa-Leal, Leonardo
Katso/Avaa
Aspect_based_automation.pdf (3.078Mb)
Lataukset: 

Elsevier BV
doi:10.1016/j.eswa.2025.130865
URI
https://doi.org/10.1016/j.eswa.2025.130865
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe202601216961
Tiivistelmä

Understanding customer satisfaction in e-commerce is crucial for businesses to remain competitive. While traditional feedback analysis methods are labour-intensive and subjective, machine learning advances have enabled more efficient and scalable sentiment analysis. However, existing models struggle with aspect-based sentiment analysis (ABSA), particularly in detecting implicit aspects and handling mixed sentiments. This paper presents a multi-model machine learning pipeline designed to enhance ABSA by integrating fine-tuned Large Language Models (LLMs) with BERT and RoBERTa-based models. The pipeline consists of an LLM-generated synthesized annotated feedback model, a BERT-based aspect detection model, a RoBERTa-based ABSA model, and an LLM-based ABSA model for handling implicit aspects and mixed sentiments. Additionally, a RoBERTa-based model is employed for overall sentiment detection. By leveraging both manually annotated and synthetic data, the pipeline improves sentiment classification accuracy and aspect coverage, even in data-scarce environments. The results demonstrate that combining multiple models enhances detection accuracy compared to single-model approaches. This study provides a scalable and effective solution for e-commerce feedback analysis, offering businesses valuable insights for improving customer experience and decision-making.

Kokoelmat
  • Rinnakkaistallenteet [29337]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste