Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Interacting short-term regulatory mechanisms enable the conversion of light energy to chemical energy in photosynthesis

Tikkanen, Mikko; Aro, Eva-Mari

Interacting short-term regulatory mechanisms enable the conversion of light energy to chemical energy in photosynthesis

Tikkanen, Mikko
Aro, Eva-Mari
Katso/Avaa
eraf451.pdf (2.037Mb)
Lataukset: 

Oxford University Press (OUP)
doi:10.1093/jxb/eraf451
URI
https://doi.org/10.1093/jxb/eraf451
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe202601216832
Tiivistelmä

Photosynthesis is a complex sequence of physical, electrochemical, biochemical and physiological processes that convert light energy and carbon dioxide into sugars. These sugars then provide the energy and carbon backbone for all metabolic pathways involved in plant growth and development. However, if light energy is not managed effectively within the thylakoid membrane, it can destroy the photosynthetic apparatus in an oxygenic environment, generated by photosynthesis itself. Effective photoprotection requires a variety of partially overlapping regulatory mechanisms that control energy, electron and proton transport, and induce changes in the molecular, structural and functional features of the photosynthetic apparatus and the thylakoid architecture. This review focuses on vital regulatory mechanisms and how they cooperate to maintain effective photosynthesis and to protect the thylakoid-embedded photosystems (PSII and PSI) against fatal light-induced damage under fluctuating light conditions. The current understanding of plant light regulation is primarily based on studies conducted under stable laboratory conditions, which limits the physiological relevance of the findings. The need for light regulation is further amplified by its complex interactions with other environmental variables. To bridge the gap between laboratory insights and real-world applicability, new technologies are needed for multi-environmental plant growth and experimentation that leverage artificial intelligence and machine learning.

Kokoelmat
  • Rinnakkaistallenteet [29337]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste