Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

TULUN: Transparent and Adaptable Low-resource Machine Translation

Merx, Raphael; Suominen, Hanna; Hong, Lois Yinghui; Thieberger, Nick; Cohn, Trevor; Vylomova, Ekaterina

TULUN: Transparent and Adaptable Low-resource Machine Translation

Merx, Raphael
Suominen, Hanna
Hong, Lois Yinghui
Thieberger, Nick
Cohn, Trevor
Vylomova, Ekaterina
Katso/Avaa
2025.acl-demo.13.pdf (680.7Kb)
Lataukset: 

URI
https://aclanthology.org/2025.acl-demo.13/
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe202601217172
Tiivistelmä
Machine translation (MT) systems that support low-resource languages often struggle on specialized domains. While researchers have proposed various techniques for domain adaptation, these approaches typically require model fine-tuning, making them impractical for non-technical users and small organizations. To address this gap, we propose TULUN,(1) a versatile solution for terminology-aware translation, combining neural MT with large language model (LLM)-based post-editing guided by existing glossaries and translation memories. Our open-source web-based platform enables users to easily create, edit, and leverage terminology resources, fostering a collaborative human-machine translation process that respects and incorporates domain expertise while increasing MT accuracy. Evaluations show effectiveness in both real-world and benchmark scenarios: on medical and disaster relief translation tasks for Tetun and Bislama, our system achieves improvements of 16.90-22.41 ChrF++ points over baseline MT systems. Across six low-resource languages on the FLORES dataset, TULUN outperforms both standalone MT and LLM approaches, achieving an average improvement of 2.8 ChrF++ points over NLLB-54B. TULUN is publicly accessible at bislama-trans.rapha.dev.
Kokoelmat
  • Rinnakkaistallenteet [29337]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste