Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Chronological age estimation from human microbiomes with transformer-based Robust Principal Component Analysis

Myers, Tyler; Song, Se Jin; Chen, Yang; De Pessemier, Britta; Khatib, Lora; Mcdonald, Daniel; Huang, Shi; Gallo, Richard; Callewaert, Chris; Havulinna, Aki S.; Lahti, Leo; Roeselers, Guus; Laiola, Manolo; Shetty, Sudarshan A.; Kelley, Scott T.; Knight, Rob; Bartko, Andrew

Chronological age estimation from human microbiomes with transformer-based Robust Principal Component Analysis

Myers, Tyler
Song, Se Jin
Chen, Yang
De Pessemier, Britta
Khatib, Lora
Mcdonald, Daniel
Huang, Shi
Gallo, Richard
Callewaert, Chris
Havulinna, Aki S.
Lahti, Leo
Roeselers, Guus
Laiola, Manolo
Shetty, Sudarshan A.
Kelley, Scott T.
Knight, Rob
Bartko, Andrew
Katso/Avaa
s42003-025-08590-y.pdf (5.105Mb)
Lataukset: 

NATURE PORTFOLIO
doi:10.1038/s42003-025-08590-y
URI
https://www.nature.com/articles/s42003-025-08590-y
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe202601217192
Tiivistelmä
Deep learning for microbiome analysis has shown potential for understanding microbial communities and human phenotypes. Here, we propose an approach, Transformer-based Robust Principal Component Analysis(TRPCA), which leverages the strengths of transformer architectures and interpretability of Robust Principal Component Analysis. To investigate benefits of TRPCA over conventional machine learning models, we benchmarked performance on age prediction from three body sites(skin, oral, gut), with 16S rRNA gene amplicon(16S) and whole-genome sequencing(WGS) data. We demonstrated prediction of age from longitudinal samples and combined classification and regression tasks via multi-task learning(MTL). TRPCA improves age prediction accuracy from human microbiome samples, achieving the largest reduction in Mean Absolute Error for WGS skin (MAE: 8.03, 28% reduction) and 16S skin (MAE: 5.09, 14% reduction) samples, compared to conventional approaches. Additionally, TRPCA's MTL approach achieves an accuracy of 89% for birth country prediction across 5 countries, while improving age prediction from WGS stool samples. Notably, TRPCA uncovers a link between subject and error prediction through residual analysis for paired samples across sequencing method (16S/WGS) and body site(oral/gut). These findings highlight TRPCA's utility in improving age prediction while maintaining feature-level interpretability, and elucidating connections between individuals and microbiomes.
Kokoelmat
  • Rinnakkaistallenteet [29337]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste