Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Microstructural evolution, deformation modes, and failure mechanisms in laser powder bed fusion processed nickel-free and 316L stainless steels

Suman, Siddharth; Goel, Sneha; Rantala, Juhani; Nurmela, Asta; Anand, Abhinav; Ganvir, Ashish; Sui, Ran; Que, Zaiqing

Microstructural evolution, deformation modes, and failure mechanisms in laser powder bed fusion processed nickel-free and 316L stainless steels

Suman, Siddharth
Goel, Sneha
Rantala, Juhani
Nurmela, Asta
Anand, Abhinav
Ganvir, Ashish
Sui, Ran
Que, Zaiqing
Katso/Avaa
1-s2.0-S0264127525013024-main.pdf (25.71Mb)
Lataukset: 

Elsevier BV
doi:10.1016/j.matdes.2025.114882
URI
https://doi.org/10.1016/j.matdes.2025.114882
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe202601215785
Tiivistelmä
This study investigates the influence of microstructures on mechanical behavior and failure mechanisms of laser based powder bed fusion processed nickel-free and 316L stainless steels using small punch testing, nanoindentation, and miniaturized tensile testing. The as-printed 316L with a fully austenitic structure and high-density dislocation cells exhibited a nanohardness of 3.0 GPa, tensile strength of 600 MPa, and elongation close to 60 %, with failure occurring through ductile microvoid coalescence. In contrast, the as-printed nickel-free stainless steel with a fully ferritic matrix and random dislocation networks showed a high nanohardness of 4.94 GPa, but poor ductility of 2 % and transgranular cleavage fracture. Heat treatment at 950 °C for 30 min transformed the nickel-free steel into a duplex microstructure (56 % ferrite and 41 % austenite, with a minor 3 % Chi phase), reducing dislocation density and inducing stacking faults. This resulted in moderate improvement in tensile strength as well as ductility and a mixed fracture mode. Post-mortem analysis revealed that Chi phase assisted crack initiation and strain localization was observed near coarse grains. The evolution of low-angle to high-angle grain and twin boundaries promoted plastic deformation. These results highlight the importance of phase engineering and microstructural control in optimizing the ductility and toughness of nickel-free steels.
Kokoelmat
  • Rinnakkaistallenteet [29337]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste