Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

A rapid review on the application of common data models in healthcare: Recommendations for data governance and federated learning in artificial intelligence development

von Gerich, Hanna; Chomutare, Taridzo; Kytö, Ville; Lundberg, Peter; Siggaard, Troels; Peltonen, Laura-Maria

A rapid review on the application of common data models in healthcare: Recommendations for data governance and federated learning in artificial intelligence development

von Gerich, Hanna
Chomutare, Taridzo
Kytö, Ville
Lundberg, Peter
Siggaard, Troels
Peltonen, Laura-Maria
Katso/Avaa
von-gerich-et-al-2025-a-rapid-review-on-the-application-of-common-data-models-in-healthcare-recommendations-for-data.pdf (2.499Mb)
Lataukset: 

SAGE Publications
doi:10.1177/20552076251395536
URI
https://doi.org/10.1177/20552076251395536
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe202601217108
Tiivistelmä

Objective

This rapid review was undertaken to summarize contemporary knowledge on the application of common data models (CDMs) for semantic data standardization in the field of healthcare and provide a set of recommendations to guide the development of a CDM.

Methods

The review adapted the Cochrane methodological recommendations for rapid reviews, namely (1) topic refinement, (2) setting eligibility criteria, (3) searching, (4) study selection, (5) data extraction, and (6) synthesis.

Results

A total of 69 studies were included in the analysis. The analysis resulted in three interconnected layers covering (1) the federated network, (2) the iterative application process of a CDM, and (3) the data management process of each partner.

Conclusion

Development and implementation of CDMs is a collaborative and iterative process, highly affected by the boundaries set by the individual federated learning partners, and the nature of their data. Interdisciplinary collaboration in application of CDMs for federated learning and data governance of health data is mandatory, with a call to increase domain expert involvement in data management.

Kokoelmat
  • Rinnakkaistallenteet [29337]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste