Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Scoping review on the economic aspects of machine learning applications in healthcare

von Gerich, Hanna; Helenius, Mikael; Hörhammer, Iiris; Moen, Hans; Peltonen, Laura-Maria

Scoping review on the economic aspects of machine learning applications in healthcare

von Gerich, Hanna
Helenius, Mikael
Hörhammer, Iiris
Moen, Hans
Peltonen, Laura-Maria
Katso/Avaa
1-s2.0-S138650562500320X-main.pdf (961.6Kb)
Lataukset: 

Elsevier BV
doi:10.1016/j.ijmedinf.2025.106103
URI
https://doi.org/10.1016/j.ijmedinf.2025.106103
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe202601216937
Tiivistelmä

Background

The development and use of artificial intelligence and machine learning technologies in healthcare have increased, prompting a need for evidence on their safety and value. Economic evaluations support healthcare decision-making and resource allocation. This scoping review aimed to map and synthesize current approaches to evaluating the economic aspects of machine learning based technologies implemented in healthcare.

Methods

Following the updated JBI guidance for scoping reviews, six databases (PubMed, CINAHL, Cochrane Library, Embase, Scopus, and IEEE Xplore) were searched for studies evaluating the economic aspects of machine learning-based technologies within healthcare. No exclusions were applied to healthcare settings, healthcare professionals or used economic evaluation methods. The results of data extraction were analyzed using descriptive statistics and inductive coding. The reporting of the studies was compared against the CHEERS-AI statement.

Results

A total of 6332 references were retrieved, with 18 studies included in the review. The studies comprised economic evaluations (n = 9), impact evaluations (n = 5), and performance evaluations (n = 4), with cost-effectiveness analysis being the most frequently used economic evaluation method (n = 8). The comparison of the studies to the reporting guidelines revealed gaps in the reporting of details from economic evaluations and the artificial intelligence nature of the technologies. Overall, the study alignment with the CHEERS-AI items on average was 39.6 %, with 64.1 % alignment with economic evaluation details, and 21.3 % alignment with key details related to the artificial intelligence nature of the evaluated technologies.

Conclusions

The current literature evaluating the economic aspects of machine learning-based technologies implemented in healthcare reveals gaps in coherence and coverage. Frameworks guiding artificial intelligence development should be refined to incorporate components related to system evaluation and post-implementation considerations. Further, multidisciplinary collaboration should be enhanced and promoted.

Kokoelmat
  • Rinnakkaistallenteet [29337]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste