Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Validation of a deep learning-based AI model for breast cancer risk stratification in postmenopausal ER+/HER2-breast cancer patients

Pouplier, Sandra Sinius; Sharma, Abhinav; Ruusuvuori, Pekka; Hartman, Johan; Jensen, Maj-Britt; Ejlertsen, Bent; Rantalainen, Mattias; Lænkholm, Anne-Vibeke

Validation of a deep learning-based AI model for breast cancer risk stratification in postmenopausal ER+/HER2-breast cancer patients

Pouplier, Sandra Sinius
Sharma, Abhinav
Ruusuvuori, Pekka
Hartman, Johan
Jensen, Maj-Britt
Ejlertsen, Bent
Rantalainen, Mattias
Lænkholm, Anne-Vibeke
Katso/Avaa
1-s2.0-S0960977625008902-main.pdf (2.357Mb)
Lataukset: 

Elsevier
doi:10.1016/j.breast.2025.104671
URI
https://doi.org/10.1016/j.breast.2025.104671
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe202601216144
Tiivistelmä

Background

Breast cancer prognostication is crucial for treatment decisions, and the Nottingham Histologic Grade (NHG) system is widely used. However, NHG suffers from interobserver variability, and its division into three risk groups leaves the intermediate group (comprising ∼50 % of patients) overrepresented, making individualized treatment planning challenging as prognosis within this group differ widely.

Objectives

This study aimed to validate the prognostic value of Stratipath's low and high-risk categories and five risk groups and compare NHG performance with the Stratipath deep-learning-based model.

Methods

We analyzed clinical data from 2466 postmenopausal, ER+/HER2-breast cancer patients who did not receive chemotherapy according to guidelines at that time. The NHG and Stratipath models were compared using concordance index and hazard ratios (HR) for distant recurrence (DR), with time to any recurrence (TR) and overall survival (OS) as secondary endpoints.

Results

The Stratipath five-risk group model showed similar performance to the NHG-system in predicting DR (c-index 0.71 vs. 0.72). HR for DR for Stratipath risk groups 2, 3, 4, and 5 were 1.91 (95 % CI: 1.17–3.13), 2.63 (95 % CI: 1.63–4.24), 3.18 (95 % CI: 2.00–5.07), and 3.25 (95 % CI: 2.00–5.28), respectively (p < 0.0001). In the NHG 2 subgroup, Stratipath Breast retained prognostic value for DR (HR for groups 3–5 vs. group 1: 1.73–1.85; p = 0.05), with a c-index of 0.71.

Conclusions

The Stratipath AI model performs similarly to the NHG system. Further prospective validation of the clinical benefits of differentiating Stratipath risk groups 2 and 3 in treatment strategies would be valuable.

Kokoelmat
  • Rinnakkaistallenteet [29337]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste