Electroactive ceramic biomaterials on the principle of bone piezoelectricity towards advanced bone engineering
Nakamura, Miho; Yamashita, Kimihiro
Electroactive ceramic biomaterials on the principle of bone piezoelectricity towards advanced bone engineering
Nakamura, Miho
Yamashita, Kimihiro
ELSEVIER
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe202601216148
https://urn.fi/URN:NBN:fi-fe202601216148
Tiivistelmä
This review concentrates on the electroactive ceramic biointerfaces inspired by bone piezoelectricity for advanced ceramic biomaterials. Bone generates electrical potentials through the piezoelectric properties of collagen fibrils and apatite minerals under mechanical loading. These electrical signals influence osteoconductivity and regenerative capacity by osteogenic cells. Synthetic ceramic biomaterials can be electrically polarized to mimic bone's natural electroactivity. Polarization improves surface wettability of biomaterial surfaces by increasing surface free energy, promoting serum protein adsorption and osteoblast adhesion while also influencing osteoclast differentiation. These surface modifications by polarization can be achieved without changing surface morphology or crystallinity and offer stable and long-lasting bioactivity at biointerface. This review details the physicochemical mechanisms underlying polarization, protein interaction, and cellular responses at biointerface. Understanding these interactions enables the rational design of electroactive ceramics that effectively guide bone regeneration. Polarized ceramics demonstrate potential as electroactive and long lifetime biomaterials in orthopedic, dental, and soft-tissue applications, suggesting a broad translational scope for regenerative medicine.
Kokoelmat
- Rinnakkaistallenteet [29337]
