Clinical risk modelling with machine learning: adverse outcomes of pregnancy
Koivu, Aki (2022-04-01)
Clinical risk modelling with machine learning: adverse outcomes of pregnancy
Koivu, Aki
(01.04.2022)
Turun yliopisto
Julkaisun pysyvä osoite on:
https://urn.fi/URN:ISBN:978-951-29-8772-6
https://urn.fi/URN:ISBN:978-951-29-8772-6
Tiivistelmä
As a complex biological process, there are various health issues that are related to pregnancy. Prenatal care, a type of preventative healthcare at different points in gestation is comprised of management, treatment, and mitigation of such issues. This also includes risk prediction for adverse pregnancy outcomes, where probabilistic modelling is used to calculate individual’s risk at the early stages of pregnancy. This type of modelling can have a definite clinical scope such as in prenatal screening, and an educational aim where awareness of a healthy lifestyle is promoted, such as in health education. Currently, the most used models are based on traditional statistical approaches, as they provide sufficient predictive power and are easily interpreted by clinicians.
Machine learning, a subfield of data science, contains methods for building probabilistic models with multidimensional data. Compared to existing prediction models related to prenatal care, machine learning models can provide better results by fitting more intricate nonlinear decision boundary areas, improve data-driven model fitting by generating synthetic data, and by providing more automation for routine model adjustment processes.
This thesis presents the evaluation of machine learning methods to prenatal screening and health education prediction problems, along with novel methods for generating synthetic rare disorder data to be used for modelling, and an adaptive system for continuously adjusting a prediction model to the changing patient population. This way the thesis addresses all the four main entities related to predicting adverse outcomes of pregnancy: the mother or patient, the clinician, the screening laboratory and the developer or manufacturer of screening materials and systems. Kliinisen riskin mallinnus koneoppimismenetelmin: raskaudelle haitalliset lopputulemat
Raskaus on kompleksinen biologinen prosessi, jonka etenemiseen liittyy useita terveysongelmia. Äitiyshoito voidaan kuvata ennalta ehkäiseväksi terveydenhuolloksi, jossa pyritään käsittelemään, hoitamaan ja lievittämään kyseisiä ongelmia. Tähän hoitoon sisältyy myös raskauden haitallisten lopputulemien riskilaskenta, missä probabilistista mallinnusta hyödynnetään määrittämään yksilön riski raskauden varhaisissa vaiheissa. Tällä mallinnuksella voi olla selkeä kliininen tarkoitus kuten prenataaliseulonta, tai terveyssivistyksellinen tarkoitus missä odottavalle äidille esitellään raskauden kannalta terveellisiä elämäntapoja. Tällä hetkellä eniten käytössä olevat ennustemallit perustuvat perinteiseen tilastolliseen mallinnukseen, sille ne tarjoavat riittävän ennustetehokkuuden ja ovat helposti tulkittavissa.
Koneoppiminen on datatieteen osa-alue, joka pitää sisällään menetelmiä millä voidaan mallintaa moniulotteista dataa ennustekäyttöön. Verrattuna olemassa oleviin äitiyshoidon ennustemalleihin, koneoppiminen mahdollistaa parempien ennustetulosten tuottamisen sovittamalla hienojakoisempia epälineaarisia päätösalueita, tehostamalla datakeskeisten mallien sovitusta luomalla synteettisiä havaintoja ja tarjoamalla enemmän automaatiota rutiininomaiseen mallien hienosäätöön.
Tämä väitös esittelee koneoppimismenetelmien evaluaation prenataaliseulonta-ja terveyssivistysongelmiin, ja uusia menetelmiä harvinaisten sairauksien datan luomiseen mallinnustarkoituksiin ja jatkuvan ennustemallin hienosäätämisen järjestelmän muuttuvia potilaspopulaatiota varten. Näin väitös käy läpi kaikki neljä asianomaista jotka liittyvät haitallisten lopputulemien ennustamiseen: odottava äiti eli potilas, kliinikko, seulontalaboratorio ja seulonnassa käytettävien materiaalien ja järjestelmien kehittäjä tai valmistaja.
Machine learning, a subfield of data science, contains methods for building probabilistic models with multidimensional data. Compared to existing prediction models related to prenatal care, machine learning models can provide better results by fitting more intricate nonlinear decision boundary areas, improve data-driven model fitting by generating synthetic data, and by providing more automation for routine model adjustment processes.
This thesis presents the evaluation of machine learning methods to prenatal screening and health education prediction problems, along with novel methods for generating synthetic rare disorder data to be used for modelling, and an adaptive system for continuously adjusting a prediction model to the changing patient population. This way the thesis addresses all the four main entities related to predicting adverse outcomes of pregnancy: the mother or patient, the clinician, the screening laboratory and the developer or manufacturer of screening materials and systems.
Raskaus on kompleksinen biologinen prosessi, jonka etenemiseen liittyy useita terveysongelmia. Äitiyshoito voidaan kuvata ennalta ehkäiseväksi terveydenhuolloksi, jossa pyritään käsittelemään, hoitamaan ja lievittämään kyseisiä ongelmia. Tähän hoitoon sisältyy myös raskauden haitallisten lopputulemien riskilaskenta, missä probabilistista mallinnusta hyödynnetään määrittämään yksilön riski raskauden varhaisissa vaiheissa. Tällä mallinnuksella voi olla selkeä kliininen tarkoitus kuten prenataaliseulonta, tai terveyssivistyksellinen tarkoitus missä odottavalle äidille esitellään raskauden kannalta terveellisiä elämäntapoja. Tällä hetkellä eniten käytössä olevat ennustemallit perustuvat perinteiseen tilastolliseen mallinnukseen, sille ne tarjoavat riittävän ennustetehokkuuden ja ovat helposti tulkittavissa.
Koneoppiminen on datatieteen osa-alue, joka pitää sisällään menetelmiä millä voidaan mallintaa moniulotteista dataa ennustekäyttöön. Verrattuna olemassa oleviin äitiyshoidon ennustemalleihin, koneoppiminen mahdollistaa parempien ennustetulosten tuottamisen sovittamalla hienojakoisempia epälineaarisia päätösalueita, tehostamalla datakeskeisten mallien sovitusta luomalla synteettisiä havaintoja ja tarjoamalla enemmän automaatiota rutiininomaiseen mallien hienosäätöön.
Tämä väitös esittelee koneoppimismenetelmien evaluaation prenataaliseulonta-ja terveyssivistysongelmiin, ja uusia menetelmiä harvinaisten sairauksien datan luomiseen mallinnustarkoituksiin ja jatkuvan ennustemallin hienosäätämisen järjestelmän muuttuvia potilaspopulaatiota varten. Näin väitös käy läpi kaikki neljä asianomaista jotka liittyvät haitallisten lopputulemien ennustamiseen: odottava äiti eli potilas, kliinikko, seulontalaboratorio ja seulonnassa käytettävien materiaalien ja järjestelmien kehittäjä tai valmistaja.
Kokoelmat
- Väitöskirjat [2839]