Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
  •   Etusivu
  • 3. UTUCris-artikkelit
  • Rinnakkaistallenteet
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

The FLUKA Monte Carlo code coupled with an OER model for biologically weighted dose calculations in proton therapy of hypoxic tumors

Camilla Hanquist Stokkevåg; Eivind Rørvik; Eirik Malinen; Camilla Grindeland Boer; Kristian Smeland Ytre-Hauge; Heikki Minn; Sarita Forsback; Andrea Mairan; Helge Henjum; Lars Fredrik Fjæra; Pauliina Wright; Antti Silvoniemi; Espen Rusten; Tordis Johnsen Dahle

The FLUKA Monte Carlo code coupled with an OER model for biologically weighted dose calculations in proton therapy of hypoxic tumors

Camilla Hanquist Stokkevåg
Eivind Rørvik
Eirik Malinen
Camilla Grindeland Boer
Kristian Smeland Ytre-Hauge
Heikki Minn
Sarita Forsback
Andrea Mairan
Helge Henjum
Lars Fredrik Fjæra
Pauliina Wright
Antti Silvoniemi
Espen Rusten
Tordis Johnsen Dahle
Katso/Avaa
Publisher's PDF (2.999Mb)
Lataukset: 

ELSEVIER SCI LTD
doi:10.1016/j.ejmp.2020.07.003
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:NBN:fi-fe2021042826493
Tiivistelmä
Introduction: The increased radioresistance of hypoxic cells compared to well-oxygenated cells is quantified by the oxygen enhancement ratio (OER). In this study we created a FLUKA Monte Carlo based tool for inclusion of both OER and relative biological effectiveness (RBE) in biologically weighted dose (ROWD) calculations in proton therapy and applied this to explore the impact of hypoxia.

Methods: The RBE-weighted dose was adapted for hypoxia by making RBE model parameters dependent on the OER, in addition to the linear energy transfer (LET). The OER depends on the partial oxygen pressure (pO(2)) and LET. To demonstrate model performance, calculations were done with spread-out Bragg peaks (SOBP) in water phantoms with pO(2) ranging from strongly hypoxic to normoxic (0.01-30 mmHg) and with a head and neck cancer proton plan optimized with an RBE of 1.1 and pO(2) estimated voxel-by-voxel using [F-18]-EF5 PET. An RBE of 1.1 and the Rorvik RBE model were used for the ROWD calculations.

Results: The SOBP in water had decreasing ROWD with decreasing pO(2). In the plans accounting for oxygenation, the median target doses were approximately a factor 1.1 lower than the corresponding plans which did not consider the OER. Hypoxia adapted target ROWDs were considerably more heterogeneous than the RBE1.1-weighted doses.

Conclusion: We realized a Monte Carlo based tool for calculating the ROWD. Read-in of patient pO(2) and estimation of ROWD with flexibility in choice of RBE model was achieved, giving a tool that may be useful in future clinical applications of hypoxia-guided particle therapy.
Kokoelmat
  • Rinnakkaistallenteet [19207]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste