Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 1. Kirjat ja opinnäytteet
  • Väitöskirjat
  • Näytä aineisto
  •   Etusivu
  • 1. Kirjat ja opinnäytteet
  • Väitöskirjat
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mechanistic population Models in Biology: Model Derivation and Application

Eskola, Hanna (2009-09-24)

Mechanistic population Models in Biology: Model Derivation and Application

Eskola, Hanna
(24.09.2009)
Katso/Avaa
AnnalesAI400Eskola.pdf (845.5Kb)
Lataukset: 

Turun yliopisto Annales Universitatis Turkuensis AI 400
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:ISBN:978-951-29-4034-9

Kuvaus

Siirretty Doriasta
Tiivistelmä
In general, models of ecological systems can be broadly categorized as ’top-down’ or ’bottom-up’ models, based on the hierarchical level that the model processes are formulated on. The structure of a top-down, also known as phenomenological, population model can be interpreted in terms of population characteristics, but it typically lacks an interpretation on a more basic level. In contrast, bottom-up, also known as mechanistic, population models are derived from assumptions and processes on a more basic level, which allows interpretation of the model parameters in terms of individual behavior.

Both approaches, phenomenological and mechanistic modelling, can have their advantages and disadvantages in different situations. However, mechanistically derived models might be better at capturing the properties of the system at hand, and thus give more accurate predictions. In particular, when models are used for evolutionary studies, mechanistic models are more appropriate, since natural selection takes place on the individual level, and in mechanistic models the direct connection between model parameters and individual properties has already been established.

The purpose of this thesis is twofold. Firstly, a systematical way to derive mechanistic discrete-time population models is presented. The derivation is based on combining explicitly modelled, continuous processes on the individual level within a reproductive period with a discrete-time maturation process between reproductive periods. Secondly, as an example of how evolutionary studies can be carried out in mechanistic models, the evolution of the timing of reproduction is investigated. Thus, these two lines of research, derivation of mechanistic population models and evolutionary studies, are complementary to each other.
Kokoelmat
  • Väitöskirjat [2940]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste