Hyppää sisältöön
    • Suomeksi
    • In English
  • Suomeksi
  • In English
  • Kirjaudu
Näytä aineisto 
  •   Etusivu
  • 1. Kirjat ja opinnäytteet
  • Väitöskirjat
  • Näytä aineisto
  •   Etusivu
  • 1. Kirjat ja opinnäytteet
  • Väitöskirjat
  • Näytä aineisto
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quasiconformal mappings and inequalities involving special functions

Bhayo, Barkat Ali (2011-06-20)

Quasiconformal mappings and inequalities involving special functions

Bhayo, Barkat Ali
(20.06.2011)
Katso/Avaa
AnnalesAI420Bhayo.pdf (272.8Kb)
Lataukset: 

Turun yliopisto Annales Universitatis Turkuensis A I 420
Näytä kaikki kuvailutiedot
Julkaisun pysyvä osoite on:
https://urn.fi/URN:ISBN:978-951-29-4649-5

Kuvaus

Siirretty Doriasta
Tiivistelmä
This PhD thesis in Mathematics belongs to the field of Geometric Function Theory. The thesis consists of four original papers. The topic studied deals with quasiconformal mappings and their distortion theory in Euclidean n-dimensional spaces. This theory has its roots in the pioneering papers of F. W. Gehring and J. Väisälä published in the early 1960’s and it has been studied by many mathematicians thereafter.

In the first paper we refine the known bounds for the so-called Mori constant and also estimate the distortion in the hyperbolic metric. The second paper deals with radial functions which are simple examples of quasiconformal mappings. These radial functions lead us to the study of the so-called p-angular distance which has been studied recently e.g. by L. Maligranda and S. Dragomir.

In the third paper we study a class of functions of a real variable studied by P. Lindqvist in an influential paper. This leads one to study parametrized analogues of classical trigonometric and hyperbolic functions which for the parameter value p = 2 coincide with the classical functions. Gaussian hypergeometric functions have an important role in the study of these special functions. Several new inequalities and identities involving p-analogues of these functions are also given.

In the fourth paper we study the generalized complete elliptic integrals, modular functions and some related functions. We find the upper and lower bounds of these functions, and those bounds are given in a simple form. This theory has a long history which goes back two centuries and includes names such as A. M. Legendre, C. Jacobi, C. F. Gauss. Modular functions also occur in the study of quasiconformal mappings.

Conformal invariants, such as the modulus of a curve family, are often applied in quasiconformal mapping theory. The invariants can be sometimes expressed in terms of special conformal mappings. This fact explains why special functions often occur in this theory.
Kokoelmat
  • Väitöskirjat [2940]

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste
 

 

Tämä kokoelma

JulkaisuajatTekijätNimekkeetAsiasanatTiedekuntaLaitosOppiaineYhteisöt ja kokoelmat

Omat tiedot

Kirjaudu sisäänRekisteröidy

Turun yliopiston kirjasto | Turun yliopisto
julkaisut@utu.fi | Tietosuoja | Saavutettavuusseloste